The toric geometry of triangulated polygons in Euclidean space
نویسندگان
چکیده
Speyer and Sturmfels [SpSt] associated Gröbner toric degenerations Gr2(C) of Gr2(Cn) to each trivalent tree T with n leaves. These degenerations induce toric degenerations M r of Mr, the space of n ordered, weighted (by r) points on the projective line. Our goal in this paper is to give a geometric (Euclidean polygon) description of the toric fibers as stratified symplectic spaces and describe the action of the compact part of the torus as “bendings of polygons.” We prove the conjecture of Foth and Hu [FH] that the toric fibers are homeomorphic to the spaces defined by Kamiyama and Yoshida [KY].
منابع مشابه
Spatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کاملOn the Moduli Space of Polygons in the Euclidean Plane
We study the topology of moduli spaces of polygons with xed side lengths in the Euclidean plane. We establish a duality between the spaces of marked Euclidean polygons with xed side lengths and marked convex Euclidean polygons with prescribed angles. 1. We consider the space P n of all polygons with n distinguished vertices in the Euclidean plane E 2 whose sides have nonnegative length allowing...
متن کاملتبیین الگوی نااقلیدسی در برنامه ریزی شهری
With domination of Kant's epistemology and instrumental reason in social science and human geography, interpretation of space have been based on neo physics that often it is equivalent with intuitive and physical experience and the place of capital and it's reproduction. Therefore we firstly have represented of ontological transform of space concept and by the way we enumerate the c...
متن کاملNonperturbative lorentzian path integral for gravity
We construct a well-defined regularized path integral for Lorentzian quantum gravity in terms of dynamically triangulated causal space-times. Each Lorentzian geometry and its action have a unique Wick rotation to the Euclidean sector. All space-time histories possess a distinguished notion of a discrete proper time and, for finite lattice volume, the associated transfer matrix is self-adjoint, ...
متن کاملEuclidean TSP on two polygons
We give an O(nm+ nm +m logm) time and O(n +m) space algorithm for finding the shortest traveling salesman tour through the vertices of two simple polygonal obstacles in the Euclidean plane, where n and m are the number of vertices of the two polygons.
متن کامل